Q.P. Code: 19HS0831

Page 1 of 2

Q.P. Code: 19HS0831

OR

RIY

- 8 a Find the directional derivative of $2xyz^2 + xz$ at (1,1,1) in the direction of normal to 6M the surface $3xy^2 + y = z$ at (0,1,1).
 - **b** Prove that $\nabla \cdot (\bar{f} \times \bar{g}) = \bar{g} \cdot (\nabla \times \bar{f}) \bar{f} \cdot (\nabla \times \bar{g}).$ 6M UNIT-V
- 9 a Find the work done by the force $\overline{F} = (2y+3)i^{p} + xzj^{p} + (yz-x)k^{p}$ when it moves 6M from (0,0,0) to (2,1,1) along the curve $x = 2t^{2}$, y = t, $z = t^{3}$.
 - **b** Evaluate by Green's theorem evaluate $\oint_c [(y \sin x)dx + \cos x dy]$, where c is the **6M**
 - triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$.

OR

- 10 a If $\overline{F} = (2x^2 + 3z)_i^p 2xy_j^p 4x_k^p$, then evaluate $\int_v \nabla \cdot \overline{F} dv$, where v is the closed 5M region bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
 - **b** Verify Stoke's theorem for $\overline{F} = (x^2)i^P + (xy)j^P$ around a square with sides along the 7M lines x = y = 0; x = y = a.

*** END ***